Table of a Weierstrass Continuous Non-Differentiable Function

By Herbert E. Salzer and Norman Levine

Many studies have been made of continuous non-differentiable functions [1], the most famous of which is Weierstrass's W(a, b, x) defined by

(1)
$$W(a, b, x) = \sum_{n=1}^{\infty} a^n \cos(b^n \pi x), \qquad 0 < a < 1, b \text{ an odd integer.}$$

It is shown in some books [1], [2] that for

(2)
$$ab > 1 + \frac{3\pi}{2},$$

W(a, b, x) is continuous everywhere and has no derivative anywhere, but Bromwich [3] improved this condition to

(3)
$$ab > 1 + \frac{3\pi}{2}(1-a),$$

which, according to Hardy [4] is the sharpest result (as of 1916) for no derivative, finite or infinite. (Hardy showed b > 1, $ab \ge 1$ sufficient to establish the non-existence of any finite derivative. He also showed that those same conditions, together with a(b + 1) < 2 for b = 4k + 1, permitted the existence of an *infinite* derivative at certain points.) To illustrate the difference between (2) and (3) for $a = \frac{1}{2}$, (2) requires $b \ge 13$, while (3) permits b = 7. However, as far as the authors know there may be considerable work to be done in the direction of lowering the bound of $1 + \frac{3\pi}{2}(1 - a)$ in (3) for the case of no derivative, finite or infinite.

Owing to the unusual nature of W(a, b, x) and the absence of any previous table, or even graph, despite the countless number of theoretical papers, it was believed that an extensive table of this Weierstrass function for some typical pair of parameters a and b might be of value as more than a mere curiosity, namely for suggesting or motivating further research, and for its interest to workers in numerical analysis. Thus, in this last connection, it might be of interest to determine empirically what results in numerical integration and possibly interpolation are available from the continuity alone. That W(a, b, x) is integrable follows from its continuity, and one might be curious to see the results of applying standard numerical integration formulas where the usual derivative formulas for the remainder would be inapplicable. Likewise, one might be curious to test out standard Lagrangian interpolation, where the remainder is often expressed in terms of derivatives. (We can write down interpolation and numerical integration formulas, avoiding derivatives in the remainder terms by employing divided differences and integrals with divided differences in the integrand, respectively. However, one usually estimates divided differences in terms of derivatives.) Finally, one's curiosity might extend as far as

Received February 23, 1960; revised July 28, 1960.

glancing at the results of standard numerical differentiation and interpretation of the results in the light of the knowledge that W(a, b, x) has no derivative.

For tabulation of any W(a, b, x), it is immediately apparent from (1) that

(4)
$$W(a, b, 1 + x) = -W(a, b, x),$$

so that the range of x need not go outside (0, 1). From (1),

(5)
$$W(a, b, 0) = -W(a, b, 1) = a/(1 - a);$$

$$W(a, b, \frac{1}{2}) = 0.$$

From the trigonometric identity

(6)
$$\cos(m\pi(\frac{1}{2}\pm t)) = \mp (-1)^{(m-1)/2} \sin m\pi t, m \text{ odd},$$

we have

(7)
$$W(a, b, \frac{1}{2} + t) = -W(a, b, \frac{1}{2} - t),$$

so that for complete tabulation of any W(a, b, x) it suffices for x to range from 0 to $\frac{1}{2}$.

In connection with the choice of a and b, it is apparent that for a close to 1, we can choose b as low as 3, but the convergence of the series in (1) would be too slow for practical calculation of W(a, b, x) to high accuracy. Making a very small would give rapid convergence, but for accuracy fixed at a certain number of decimal places as a tends to get very small, say

$$a = \epsilon, \qquad b^{a} > N = \left\{1 + \frac{3\pi}{2}(1-\epsilon)\right\}^{n} / \epsilon^{n}$$

becomes enormous and $W(\epsilon, b, x)$ becomes essentially the first term of (1), $\epsilon \cos(b^n \pi x)$, whose graph would appear like that of a very highly oscillatory function of small amplitude. As a compromise between these two extreme types, we took $a = \frac{1}{2}$ and b = 7. The choice $a = \frac{1}{2}$ did not lead to too many terms of (1), 50 terms giving a truncating error $< \frac{1}{2} \cdot 10^{-15}$, and yet there were sufficient terms beyond the first few to give a graph that is characteristic of W(a, b, x) rather than a predominantly sinusoidal type of curve. The b = 7 barely satisfies (3), thus tending to minimize the oscillatory behavior of W(a, b, x) and to facilitate graphing. We shall denote W(a, b, x) which is tabulated here for $a = \frac{1}{2}$ and b = 7 by W(x).

This present table of W(x), x = 0(.001)1 to 12D, was printed out and rounded from a preliminary calculation on the IBM 704 to several more places. Two separate and independent print-outs, supposedly identical, were proofread against each other, with just a single print-out error turning up. Naturally, no differencing check could be made upon the correctness of this table of W(x), but every value underwent the following final functional check:

(8)
$$W(7x) = 2W(x) - \cos((7\pi x))$$

which was performed by desk calculation upon W(x) on one of the preliminary print-outs. The results showed W(x) to be correct to around 14D. In employing (8), W(7x) was found in the table as $\pm W(x')$ for some suitable $x', 0 \leq x' \leq \frac{1}{2}$, according to (4) and (7), and cos $(7\pi x)$, after reduction of $7\pi x$ to the first quadrant, was

FIG. 1.—fllustration of a Weierstrass, Everywhere-Continuous Nowhere-Differentiable Function, $W(x) = \sum_{n=1}^{\infty} a^n \cos(b^n \pi x) \ a = \frac{1}{2}; \ b = 7; \ x = 0(0.001)0.500$

looked up in a well-known 15-place table at intervals of 0.01° [5]. The final 12-decimal table was checked by reading it several times against one of the print-outs, and it is believed to be correct to well within a unit in the 12th decimal.

The purpose of the accompanying figure, which is merely a broken line graph of the table of W(x), is to furnish at a glance a view of the peculiar behavior of W(x). Of course, the graphical picture would be more complete if the time and means were available for calculating W(a, b, x) as a function of a also, and for a sequence of permissible odd integral values of b (according to (3)) to correspond to each a. Although no offhand justification could be found for drawing anything smoother than a broken line connecting these 500 points, one still finds its ripples of irregularity, superposed upon a broader pattern of smoothness, to be quite revealing as to the nature of W(x) and how it might appear under repeated "magnification" (i.e., subtabulation).

To establish (8), replace x by 7x, in $W(x) = \sum_{n=1}^{\infty} \cos((7^n \pi x)/2^n)$, to get

$$W(7x) = 2\sum_{n=1}^{\infty} \cos\left(\frac{7^{n+1}\pi x}{2}\right) - \frac{2^{n+1}\pi x}{2^{n+1}} = 2\sum_{n'=2}^{\infty} \cos\left(\frac{7^{n'}\pi x}{2}\right) - \frac{2W(x)}{2^{n'}} = 2W(x) - \cos\left(\frac{7\pi x}{2}\right).$$

By repeated application of (8),

$$W(7^{n}x) = 2W(7^{n-1}x) - \cos(7^{n}\pi x) = 4W(7^{n-2}x) - 2\cos(7^{n-1}\pi x) - \cos(7^{n}\pi x)$$

= $8W(7^{n-3}x) - 4\cos(7^{n-2}\pi x) - \cdots$ etc. until we reach
(9) $W(7^{n}x) = 2^{n}W(x) - \sum_{n=1}^{n-1} 2^{n}\cos(7^{n-n}\pi x).$

From (9), for
$$x = 1/7^n$$
, $W(1) = -1 = 2^n W(1/7^n) - \sum_{r=0}^{n-1} 2^r \cos(\pi/7^r)$, from

which

(10)
$$W(1/7^{n}) = -1/2^{n-1} + \sum_{r=1}^{n-1} \cos(\pi/7^{r})/2^{n-r}.$$

Letting $n \to \infty$ in (10), we see at once that

(11)
$$\lim_{n \to \infty} \left\{ \sum_{r=1}^{n-1} 2^r \cos\left(\frac{\pi}{7^r}\right) \right\} / 2^n = 1.$$

To test the value of standard numerical integration formulas upon W(x), whose integral is given by

(12)
$$\int_0^x W(t) dt = \frac{1}{\pi} \sum_{n=1}^\infty \sin (7^n \pi x) / 14^n,$$

the values of $\int_{0}^{0.1} W(t)dt$, $\int_{0.1}^{0.2} W(t)dt$, \cdots , $\int_{0.4}^{0.5} W(t)dt$ were computed analytically from (12), and then were computed numerically by both trapezoidal and Simpson's rules at intervals of 0.001, with the following results:

Interval	True Value	Trapezoidal Rule	Deviation	Simpson's Rule	Deviation
0 to 0.1 0.1 to 0.2 0.2 to 0.3 0.3 to 0.4 0.4 to 0.5	$\begin{array}{c} 0.01899 \ 29 \\ -0.04145 \ 65 \\ 0.03084 \ 62 \\ 0.00337 \ 70 \\ -0.03298 \ 02 \end{array}$	$\begin{array}{c} 0.01898 \ 76 \\ -0.04143 \ 80 \\ 0.03084 \ 43 \\ 0.00342 \ 54 \\ -0.03300 \ 67 \end{array}$	$\begin{array}{c} -0.00000 \ 53 \\ +0.00001 \ 85 \\ -0.00000 \ 19 \\ +0.00004 \ 84 \\ -0.00002 \ 65 \end{array}$	$\begin{array}{c} 0.01901 \ 44 \\ -0.04145 \ 43 \\ 0.03085 \ 14 \\ 0.00340 \ 27 \\ -0.03288 \ 27 \end{array}$	$\begin{array}{c} +0.00002 \ 15 \\ +0.00000 \ 22 \\ +0.00000 \ 52 \\ +0.00002 \ 57 \\ +0.00009 \ 75 \end{array}$

The results show no recognizable advantage in Simpson's rule. In fact, the sum of the absolute values of the above deviations in the trapezoidal rule is around 10^{-4} , while the sum of the absolute values of the Simpson deviations is around $1\frac{1}{2} \cdot 10^{-4}$. This may indicate that no higher-point formula will improve over the trapezoidal formula.

Lagrangian polynomial interpolation at intervals of 0.002 was tried for the 2through 7-point cases, for a mid-interval (i.e., already tabulated) value of W(x) at two different places, x = 0.007 and x = 0.037, where the true value to 5D is 0.60807 and 0.43362 respectively. At each place the error in almost all cases ranged from around 0.01 to 0.05. More specifically, for x = 0.007 the error fluctuated between 0.01 for every even-point interpolation and 0.014 to 0.049 for various odd-point interpolations, and for x = 0.037 there were deviations of 0.032 and 0.055 for respective 2-point and 3-point interpolation and deviations ranging from 0.001 to 0.021 in the higher-point interpolation. On the basis of these two tests alone it would appear that one could not really count upon any systematic improvement beyond linear interpolation.

Finally, out of pure curiosity, 2- through 7-point Lagrangian differentiation, for the "first derivative," was tried out at the tabular interval of 0.001, for x = 0.002, and surprisingly enough, outside of the 2-point answer of -74 and the 3-point answer of -133, the remaining four cases all came within 6 units of -150.

From a casual look at the graph of W(x), it is apparent that in place of the derivative there is a general directional trend from any point x_0 if we do not go too far away from x_0 , and we might seek a suitable quantitative estimate for an "average slope" between x_0 and $x_0 + h$. (The discussion here is concerned with a suitable generalization of the left- or right-hand derivative, rather than the derivative.) One suggestion that would appear natural for W(x, a, b), or any other continuous function, would be to investigate the possibilities of the average of the difference quotient $\{f(x) - f(x_0)\}/(x - x_0)$, which exists and is itself continuous for every x except x_0 in the open interval $(x_0, x_0 + h)$. This average difference quotient or $\mathfrak{D}_h f(x_0)$ might have the following definition (assuming that it exists in the first place):

(13)
$$\mathfrak{D}_{h}f(x_{0}) = \frac{1}{h}\int_{x_{0}}^{x_{0}+h} \left\{ [f(x) - f(x_{0})]/(x - x_{0}) \right\} dx.$$

That (13) may be a suitable generalization follows from the fact that when $f'(x_0)$ exists, (13) exists, and

(14)
$$\lim_{h\to 0} \mathfrak{D}_h f(x_0) = f'(x_0).$$

This is seen at once from the replacement of $\{f(x) - f(x_0)\}/(x - x_0)$ by $f'(x_0) + \epsilon(x)$ in (13) and the continuity of $\epsilon(x)$ in the closed set $(x_0, x_0 + h)$ which makes $\epsilon(x)$ integrable. Thus (13) exists and

$$\left|\frac{1}{h}\int_{x_0}^{x_0+h}\epsilon\ (x)\ dx\right|\to 0\quad \text{as}\quad h\to 0,$$

which implies (14).

It is not difficult to find examples of continuous functions f(x) where $f'(x_0)$ does not exist and (a) also $\mathfrak{D}_h f(x_0)$ does not exist, or (b) $\mathfrak{D}_h f(x_0)$ exists but $\lim_{h\to 0} \mathfrak{D}_h f(x_0)$ does not exist. But we may also have (c) no $f'(x_0)$, with both $\mathfrak{D}_h f(x_0)$ and $\lim_{h\to 0} \mathfrak{D}_h f(x_0)$ existing. In other words the existence of $\lim_{h\to 0} \mathfrak{D}_h f(x_0)$ still does not imply the existence of $f'(x_0)$. Such a counter-example,* which is due to the referee, is the following. Let $x_0 = 0$ and

$$f(x) = x \sin \frac{1}{x} \qquad (x \neq 0)$$

$$f(0) = 0.$$

This continuous function has no derivative at x = 0, but

$$\lim_{h\to 0}\mathfrak{D}_h f(0) = 0$$

First

$$\mathbb{D}_{h} = \frac{1}{h} \int_{0}^{h} \sin\left(\frac{1}{x}\right) dx$$

exists since the integrand is bounded and continuous except at one point. This suffices. To estimate \mathfrak{D}_h we let

$$I_n = \int_{1/(n+1)\pi}^{1/n\pi} \sin\left(\frac{1}{x}\right) dx = \int_{n\pi}^{(n+1)\pi} \frac{1}{y^2} \sin y \, dy.$$

By the mean value theorem

$$I_n = (-1)^n \cdot 2/\theta_n^2$$

where

$$n\pi < \theta_n < (n+1)\pi.$$

Suppose that $h = 1/(n + a)\pi$, $0 \leq a < 1$. Then

$$\mathfrak{D}_{h} = (n+a)\pi \left[\int_{(n+a)\pi}^{(n+1)\pi} y^{-2} \sin y \, dy + I_{n+1} + I_{n+2} + \cdots \right],$$

and therefore $|\mathfrak{D}_h| < (n+a)\pi |I_n| < 2(n+a)\pi/n^2\pi^2$.

Therefore as $h \to 0$, \mathfrak{D}_h also $\to 0$.

The authors wish to acknowledge the assistance of Mrs. Charlene M. Janos in checking the entire table of W(x) by the functional check (8).

Convair-Astronautics San Diego, California

A. N. SINGH, The Theory and Construction of Non-Differentiable Functions, Lucknow University Studies, Faculty of Science, no. 1, 1935, reprinted in Squaring the Circle and Other Monographs, Chelsea Publishing Co., New York, 1953.
 E. GOURSAT, A Course in Mathematical Analysis, Vol. 1, translated by E. R. Hedrick, Circle and Cherk, Circle and Che

Ginn & Co., Boston, 1904, p. 423-425.

3. T. BROMWICH, An Introduction to the Theory of Infinite Series, Macmillan & Co., Ltd., London, 1908, p. 490-491. Note: The proof of the sufficiency of $ab > 1 + \frac{3\pi}{2}(1-a)$ is not contained in the later 1926 edition.
4. G. H. HARDY, "Weierstrass's non-differentiable function," Trans. Amer. Math. Soc.,

v. 17, 1916, p. 301-325.

5. NAT. BUR. STANDARDS Appl. Math.Ser. No. 5, Table of Sines and Cosines to Fifteen Decimal Places at Hundredths of a Degree, U. S. Government Printing Office, Washington 25, D. C., 1949.

* Another counter-example found after that of the referee is the following: f(x) = $x\phi(x), x \neq 0, f(0) = 0$, where $\phi(x) = 1$ except in the intervals $[(1/n - 1/n^3), 1/n]$, within which $\phi(x) = 0$. Now f(x) is continuous at x = 0 and has no derivative there. But $1/h \int_0^h \phi(x) dx \to 1$ as $h \rightarrow 0$, because the "dipped-out" area becomes an infinitesimal fraction of the whole (also infinitesimal) area between 0 and h, since as $h \sim 1/n$, we remove $\sum_{m=n}^{\infty} 1/m^3 \sim 1/2n^2 \sim 0(h)$.

Table of $W(x) \equiv \sum_{n=1}^{\infty} \cos (7^n \pi x)/2^n$

<i>x</i>	W(x)		x	W (.x)	
000	1 00000 00000 00	1.000		23088 91433 53	950
.000	80391 58298 49	999	051	20682 52628 39	949
.001	61188 60438 58	.998	052	27128 71570 31	.948
003	$53777 \ 60375 \ 27$.997	.053	16118 34941 71	.947
.004	64747 48039 38	.996	.054	.08069 56769 70	.946
005	87163 69853 23	.995	.055	02066 12990 04	.945
.006	.76687 71957 75	.994	.056	11450 55193 73	.944
.007	.60807 34552 61	.993	.057	02295 65257 19	.943
.008	.43502 94075 78	.992	.058	01951 72464 55	.942
.009	$.40541 \ 06494 \ 76$.991	.059	.01151 68818 80	.941
.010	$.56641 \ 31472 \ 93$.990	.060	09698 14952 80	.940
.011	.54275 36720 27	.989	.061	27187 35472 72	.939
.012	$.50694 \ 91215 \ 98$.988	.062	23653 00063 45	.938
.013	$.34801 \ 25245 \ 87$.987	.063	16965 63244 21	.937
.014	$.22473 \ 91530 \ 39$. 986	.064	$.01498 \ 43634 \ 87$.936
.015	$.27196 \ 45026 \ 68$.985	.065	00239 70885 80	.935
.016	.25665 87904 18	.984	.066	20181 95236 74	.934
.017	.34500 48434 78	. 983	.067	25856 31395 23	.933
.018	$.29744 \ 09740 \ 20$.982	.068	21932 57817 04	.932
.019	$.19896 \ 02842 \ 26$.981	.069	.05550 33815 80	.931
.020	.16232 54753 01	.980	.070	$.15690 \ 95326 \ 47$.930
.021	.07772 75335 97	.979	.071	$.01436 \ 83992 \ 20$.929
.022	.20584 44795 34	.978	.072	09812 03304 88	.928
.023	.28363 56796 36	.977	.073	15074 56668 50	.927
.024	.31741 47365 60	.976	.074	.09240 88499 35	.926
.025	.28730 16038 97	.975	.075	.24890 58340 07	.925
.026	.11054 29341 42	.974	.076	.20632 59257 00	.924
.027	.17279 94307 92	.973	.077	$.11462 \ 33882 \ 35$.923
.028	.29881 59987 33	.972	.078	02304 18919 60	.922
.029	.48372 84610 58	.971	.079	.09557 81653 49	.921
.0.30	.04441 21940 09	.970	.080	.19794 01773 19	.920
.0.31	.32388 99122 78	.909	.081	.22531 98834 20	.919
.032	.20990 15285 84	.908	.082	.20870 39170 94	.918
.055	-552257440204	.907	.083		.917
.004	74031 20151 01	.900	.004		.910
.035	56632 00611 85	. 905	.085	03684 58507 18	.915
037	43361 86486 58	963	.080	08433 37682 40	012
038	36496 26383 50	962	088	-01214 33731 42	012
039	55435 98106 40	.961	089	-05215 21171 01	911
040	75565 42269 37	.960	.000	-19576 22844 41	910
.041	.66141 61182 70	.959	091	-26338 74226 81	909
.042	.54244 67604 80	.958	.092	21893 60178 36	.908
.043	.36553 53065 06	.957	.093	22931 50089 58	.907
.044	.41175 90597 74	.956	.094	19289 54543 34	.906
.045	.54502 46829 96	.955	.095	36048 94459 76	.905
.046	$.52178 \ 60105 \ 03$.954	.096	51624 68304 42	.904
.047	.49248 88676 02	.953	.097	54350 09214 87	.903
.048	.30088 64437 50	.952	.098	50350 10354 40	.902
.049	.22797 19914 12	.951	.099	33848 06786 76	.901
	-W(x)	x		-W(x)	x

	I			1	
x	W'(x)		x	$W(\mathbf{x})$	
100	- 42532 54041 76	000	150	- 60028 87410 74	850
101	-601220772800	800	151	-1805266741974	.830
102	-71436 04664 23	808	152	-40711 07070 26	.0 1 9 Q1Q
102	-60032 26505 60	807	152	-40170 75145 65	.040
104	09032 20090 09 43704 73064 53	806	154	49479 70140 00 47954 99599 65	.011
105	-10215 62524 01	.050	155	17504 25022 00	.010
106	-50671 30037 48	80.1	156	-36070 28855 01	.040
.100	-65937 17461 67	.094	157	= .30979 20033 91 = 20677 00741 25	.044
108	-68741 46475 51	802	158	$= 21017 \ 40007 \ 16$.040
100	-44815 12202 00	801	150	-21517 49907 10 -21521 60082 11	.042
110	-22048 00402 28	800	160	= 21001 09900 41 = 29774 97620 11	.041
.110	-32606 82606 01	.890	161	= .02774 07009 11 = .00751 75250 62	.040
.111	-32090 85090 91 -42541 62768 18	.009	.101	0751 75250 02	.009
.112	-50701 25026 15	.000	162	$= .27020 \ 50059 \ 27$.000
.110	= .50701 25020 15 = .26527 04052 46	100.	.105	-11494 70174 04 05602 76141 40	.001
.114	= .30327 04033 40 = .28717 02082 14	.000	.104	-10512,20668,60	.000
. 110 116	20111 02900 14 - 10425 96520 79	.000 901	. 100 166	199+2.29008 00 20152 92044 41	.000
.110	$= .19433 \ 800339 \ 72$.004	.100	50152 65944 41	.801
.117	-20345 01349 89 -27648 05287 06	.000	.107		.000
.110	-21048 95287 90 -24001 87061 61	.002	.100	22909 59440 75	. 8.02
.119	-27497 80580 66	.001	.109		.001
.120	-10504 52705 68	.000	.170		.800
.121	-14745 69710 10	.019	.171	33800 07973 80	.829
.144	14745 02719 19	.010	.172	53004 02832 10	.828
.120	-16212 11716 57	.011	.170	40004 70110 99	.021
.124	-30705 08441 70	.070	.174	$-30129 \ 60565 \ 60$.820
120	-39770 07018 31	874	.175	-20280 65026 50	.820
.120	-30642 17006 08	.074	.170	39260 00930 00	.02±
128	-25457 54002 71	879	.177	03162 79632 20 65182 20288 20	.040
120	-20521 28645 40	871	170	-52351 02271 80	.022
120	-382265700618	870	180	00001 02071 09 4069 14071 79	.021
.130	-51008 60535 12	.870	.100	- 42578 01091 89	.020
132	-58807 88203 07	868	189	-61085 87140 15	.819
. 132	-51605 03293 07	867	.102	-64022 21602 62	.010
134	-37298 02555 40	866	184	-69277 87492 03	.017
125	- 48222 02333 49	865	195	-54441 65421 72	.010
136	-64476 00042 44	864	186	-43416 51101 85	.010
137	- 82656 60801 00	863	187	- 47153 42799 07	812
138	-789005003190	862	188	-44187 85019 59	.010 819
139	58460 20582 18	861	180	-48324 34652 91	811
140	58017 61018 65	.860	100	$-48100\ 45514\ 76$	810
141	67358 03204 65	850	101	- 36210 94630 76	800
142	88334 97740 78	858	102	- 28385 07250 58	808
143	90195 54475 25	.857	193	-13957 34378 96	807
.144	71735 67984 31	.856	194	-171327351109	806
.145	63542 71888 15	.855	.195	-24380 91207 97	805
.146	60172 84929 47	.854	196	21870 72532 52	804
.147	73979 05811 32	.853	197	13838 71322 99	.803
.148	77996 61358 53	.852	198	.09801 82360 71	.802
.149	67821 23623 64	.851	.199	.14666 52327 61	.801
	$-\Pi'(x)$	x		$-W(\mathbf{x})$	x

TABLE OF W(x)—Continued

TABLE OF W(x)—Continued

TABLE OF W(x)Continuea						
<i>x</i>	II [*] (x)		<i>x</i>	W (x)		
200	06366 10018 75	800	250	70710 67811 87	750	
201	-04175 22364 04	799	251	59986 16383 91	749	
202	-07176 70750 18	798	252	12000 10505 51	718	
202	16401 55220 04	797	253	36660 93235 94	717	
200	20071 35815 61	796	.200	32705 62544 06	746	
205	28236 81375 00	795	255	15918 11131 01	745	
206	10035 12671-93	791	256	43000 78607 21	711	
200	08006 36501 20	793	257	$38270 \ 70034 \ 21$	743	
201	06602 53228 00	702	258	32131 23701 08	719	
200	22101 83000 70	701	250	$18040 \ 34507 \ 72$	7.11	
210	20866 03766 13	790	255	20089 17400 15	740	
210		780	261	10502 02282 86	730	
.211	-11156 27605 97	788	269	$-13502 \ 52202 \ 00$ $-28277 \ 11533 \ 62$	738	
212	-0.8027 61047 33	787	.202	33124 0.1143 10	737	
1.0	$-00503 \ 13683 \ 93$	786	26.1	10535 83701 30	736	
.214		785	265		.730	
.215	0.7237 0.0550 68	781	.200	0.13130 01934 73 0.5022 07001 64	.730	
.210	-12870.66881.32	783	267	20320 81811 07	722	
.217	-17100 62110 85	- 780	.207	28007 20175 80	. 700	
.218	-20520, 48221, 30	.781	.208		721	
	-10306 03551 20	780	.209	30060 58508 63	730	
. 220	$= 05670 \ 81000 \ 53$.780	.270	12888 06220 58	.730	
· 221 000	-11058 01070 08	.779	.271	21020 90220 30	.729	
. 222	-11058 04979 98	.777	.272		.128	
. 22.) 99.1	= .11000 + 1020 + 1 = .00082 08510 + 1	776	.275		.121	
.224	-22200, 98042, 44	.775	.274	61062 79779 09	.720	
. 220	19200 11772 88	.775	.210	27907 11700 29	.720	
. 220	= 10099 14770 00 = 05228 59971 20	.779	.270		.724	
. 221	07170 01075 14	- 779	.277		.720	
220	-01806 62808 75	771	.278	71020 38101 87	.722	
. 225	-0.0113 20711 71	770	.279		.721	
.200	$= 08251 \ 10061 \ 06$.770	.200		.720	
·	02067 20418 75	768	.201	55260 11210 88	.719	
. 2.72		.708	. 202	50858 06717 59	.710	
. 2.9.9	20272 06421 48	766	. 200		716	
	25331 56046 85	765	.204		.710	
235	19217 07877 81	764	286	80503 31593 57	.713 71.1	
.200		763	.280	70250 51785 63	712	
238	13416 31698 35	762	.201	69760 78735 19	719	
	37251 02757 22	761	. 200		711	
240	60020 74057 03	760	.209		710	
240	29293 37880 18	750	.290	71242 59528 50	.710	
9.19	20001 21001 20	759	.291	70111 02197 26	.709	
213		757	. 292		. 708	
210	65159 09709 15	756	290		.707	
215		755	205	.10201 00102 10	.700	
· 240 946	58771 12046 19	75.1	.200	12820 20711 10	- 705	
· 240 9.17	20202 00101 08	759	. 290	- 40040 04/11 49 52916 00190 70	709	
· 271 918	13531 55809 80	- 750	. 291		. 703	
· 2+0 9.10	53701 70211 99	751	. 298	26115 22105 00	.702	
. 17		. 7.91	. 299	00 66166 61406.	.701	
	W(x)			- W (x)	~	
		~		"(*)		

تد	$W(\mathbf{x})$		x	W'(x)	
. 300	.26286 55560 60	.700	.350	.00778 77869 67	.650
.301	$.14582 \ 98589 \ 87$.699	.351	17204 22086 50	.649
.302	$.28563 \ 97407 \ 01$.698	.352	23029 21241 86	.648
.303	.36633 50157 87	.697	.353	23647 30864 44	.647
.304	.33282 81740 47	.696	.354	01762 25274 42	.646
.305	$.21458 \ 96315 \ 30$.695	.355	$.06669 \ 22195 \ 13$.645
.306	$.00939 \ 20926 \ 45$.694	.356	$.00075 \ 62690 \ 21$.644
.307	.10710 80078 80	.693	.357	02063 75236 12	.643
.308	.25624 91704 22	.692	.358	08880 13434 64	.642
.309	.37838 97945 27	.691	.359	.03980 77688 40	.641
.310	.34385 20085 52	.690	.360	.10006 60841 69	.640
.311	.09875 62075 19	.689	.361	.12219 89553 34	.639
.312	.10/3/ 46483 /0	.688	.362	.18737 00058 83	.638
.313	.23160 40973 59	.687	.363	.10954 21317 00	.637
.314	. 45535 62002 52	.686	.364	. 12819 87330 70	.636
.315	.54102 65479 93	.685	.365	.07610 38829 89	.635
.316	.33736 28357 70	.684	.366		.634
.317		.083	.307		. 633
.318	.30908 32189 31	.082	.308		.6.32
.319		.081	.369		.631
.320		.080	.370	00362 33217 53	.630
.321		.079	.371	07189 57360 01	.629
. 322		.078	.372	.04004 08396 66	.628
.323	.43804 14180 98	.677	.3/3	.07904 58408 70	.627
.324	.52349 24425 12	.070	.3/4	.09708 84764 28	.626
.320		.070	.375	12736 11441 22	.625
.320		.074	.370	30043 00117 72	.024
. 341	.0279± 97013 07 51905 41971 09	.07.5	.311	27200 07702 10	.023
.328		.072	.378	21200 78017 98	.022
. 329	15906 76029 09	670	.379	09420 94400 59	.021
. 000		.010	.300	20032 03801 78 49045 10096 02	.020
.001	59492 25269 26	.009	.001	-36043 19060 93	.019
		.008	.002	-59637 59080 00	.018
224	37014 19313 21	.007	384	-32037 52039 99 -32919 51294 90	616
225	22552 02235 10	665	385	-30470 7.1.17 87	615
336	10904 55159 52	.005	386	-546570702333	614
337	23421 37763 08	663	387	-661928470916	613
338	25303 23429 37	.662	388	-690405329205	612
.339	23376 32937 51	.661	389	-49978 37896 32	611
.340	.05089 90862 54	.660	.390	48100 38625 93	610
.341	15716 90669 72	.659	.391	-50444 79258 90	.609
.342	09044 72949 99	.658	.392	56183 05832 68	.608
.343	01752 94215 89	.657	.393	62318 58803 80	.607
.344	.09699 75179 51	.656	.394	50778 26196 53	.606
.345	01688 93672 23	.655	.395	49647 33948 32	.605
.346	25654 09168 79	.654	.396	41302 52891 40	.604
.347	27382 88597 64	.653	. 397	35589 92135 83	.603
.348	21463 82850 53	.652	.398	38867 82210 92	.602
.349	$.00184 \ 25835 \ 82$.651	. 399	35791 63481 26	.601
	- II ⁻ (x)	x		-W(x)	r

TABLE OF W(x)—Continued

TABLE OF W(x)—Concluded

<i>x</i>	W (x)		x	W'(x)	
. 400	43633 89981 25	.600	. 450	14085 88911 07	. 550
. 401	34108 64853 67	. 599	.451	28701 85703 94	.549
. 402	19995 66617 14	. 598	.452	40662 30552 60	. 548
. 403	15624 84342 39	. 597	. 453	26053 58919 44	.547
. 404	15344 31864 89	. 596	.454	09792 69986 33	.546
. 405	33660 42737 89	. 595	. 455	14569 54090 97	.545
. 406	33007 06597 37	. 594	. 456	26984 09362 85	.544
.407	20452 46632 06	. 593	.457	47876 24067 97	.543
.408	09102 42265 68	. 592	. 458	44907 28535 16	.542
. 409	04111 67965 83	.591	. 459	34753 36936 00	.541
. +10	20774 44625 33	.590	.460	33327 19438 23	.540
.+11	38274 33375 09	.589	.461	35146 25764 11	.539
.+12		.588	.462	52273 62074 43	.538
.+13	24089 40307 00	. 387	.463	55987 41267 67	.537
.+1+	11730 78392 84 90765 17914 11	.080	.404	57344 06332 45	. 536
. +10	29703 17844 11 17404 91409 99	. 383	.400	07404 69550 42	. 035
.410	1491 21492 22 - 50655 94019 74	509	.400	+3130 22000 42	.534
.118	-53975 36801 50	.000	. +07		. 533
.410	-35968 31001 54	- 581	.400	51301 35002 51 61426 17790 60	.032
420	-44265 28777 24	580	470	-60144 70666 05	.001
421	-57367 68152 00	570	471	-56302 62767 02	. 550
. 422	75568 10645 53	578	479	-30392 03707 92 - 45590 04287 35	.529
423	77343 16806 93	577	473	-32011 02298 10	.526
. 424	63242 61726 82	576	474	-32511 52528 10 -42540 32355 30	.041
.425	64210 94688 15	.575	475	-57627 07637 41	.520
.426	64792 12620 64	.574	.476	-51397 83689 36	520
.427	77107 83101 91	.573	.477	35913 37922 98	523
. 428	823697924071	.572	.478	104305080599	.522
. 429	76886 58123 18	.571	.479	10454 99179 66	.521
.430	78295 98538 29	. 570	.480	26292 26878 67	.520
.431	67178 95122 99	. 569	.481	31706 81976 54	.519
.432	65728 68184 10	. 568	.482	24133 62343 53	.518
.433	65957 56572 42	. 567	.483	.05762 50734 01	.517
.434	67892 26214 60	. 566	.484	.17288 12030 15	.516
. 435	76752 41703 56	. 565	. 485	.08627 79883 17	.515
.436	62898 65506 20	. 564	.486	05153 93039 59	.514
.437	49719 39800 06	.563	.487	12044 48896 59	.513
.438	38838 06903 26	.562	.488	$.10705 \ 03214 \ 66$.512
. +39		.561	.489	$.26694 \ 06923 \ 26$.511
. 11 0	58320 16692 24	.560	.490	.28240 83062 16	.510
. ++1	52300 70974 04	.559	.491	.15028 16426 95	.509
. ++2	38190 82980 12	. 558	.492	02361 75574 02	.508
. 11 0 1/1	-174+9 01231 01 - 19778 70441 71	. 357	.493	.06684 38933 29	. 507
115	- 39412 69669 20	. 330	.494		.506
446	- 38000 1110 0002 08	.000	.495		.505
.447	-35680 94535 97	.004	.490	.1000/ 40210 92	. 504
.448	- 13266 84389 90		.491	.01931 21000 07	. 503
.449	.00059 06984 60	551	400	.00910 20928 21	. 502
	100000 0000T 00		.499 500	04441 00347 11	.501
					. 900
	$-W(\mathbf{x})$	x		-H.(x)	x