Table of a Weierstrass Continuous Non-Differentiable Function

By Herbert E. Salzer and Norman Levine

Many studies have been made of continuous non-differentiable functions [1], the most famous of which is Weierstrass's $W(a, b, x)$ defined by

$$
\begin{equation*}
W^{\prime}(a, b, x)=\sum_{n=1}^{\infty} a^{n} \cos \left(b^{n} \pi x\right), \quad 0<a<1, b \text { an odd integer. } \tag{1}
\end{equation*}
$$

It is shown in some books [1], [2] that for

$$
\begin{equation*}
a b>1+\frac{3 \pi}{2} \tag{2}
\end{equation*}
$$

$I^{\top}(a, b, x)$ is continuous everywhere and has no derivative anywhere, but Bromwich [3] improved this condition to

$$
\begin{equation*}
a b>1+\frac{3 \pi}{2}(1-a) \tag{3}
\end{equation*}
$$

which, according to Hardy [4] is the sharpest result (as of 1916) for no derivative, finite or infinite. (Hardy showed $b>1, a b \geqq 1$ sufficient to establish the non-existence of any finite derivative. He also showed that those same conditions, together with $a(b+1)<2$ for $b=4 k+1$, permitted the existence of an infinite derivative at certain points.) To illustrate the difference between (2) and (3) for $a=\frac{1}{2}$, (2) requires $b \geqq 13$, while (3) permits $b=7$. However, as far as the authors know there may be considerable work to be done in the direction of lowering the bound of $1+\frac{3 \pi}{2}(1-a)$ in (3) for the case of no derivative, finite or infinite.

Owing to the umusual nature of $W(a, b, x)$ and the absence of any previous table, or even graph, despite the countless number of theoretical papers, it was believed that an extensive table of this Weierstrass function for some typical pair of parameters a and b might be of value as more than a mere curiosity, namely for suggesting or motivating further research, and for its interest to workers in numerical analysis. Thus, in this last connection, it might be of interest to determine empirically what results in numerical integration and possibly interpolation are available from the continuity alone. That $W(a, b, x)$ is integrable follows from its continuity, and one might be curious to see the results of applying standard numerical integration formulas where the usual derivative formulas for the remainder would be inapplicable. Likewise, one might be curious to test out standard Lagrangian interpolation, where the remainder is often expressed in terms of derivatives. (We can write down interpolation and numerical integration formulas, avoiding derivatives in the remainder terms by employing divided differences and integrals with divided differences in the integrand, respectively. However, one usually estimates divided differences in terms of derivatives.) Finally, one's curiosity might extend as far as

[^0]glancing at the results of standard numerical differentiation and interpretation of the results in the light of the knowledge that $W(a, b, x)$ has no derivative.

For tabulation of any $W(a, b, x)$, it is immediately apparent from (1) that

$$
\begin{equation*}
W(a, b, 1+x)=-W(a, b, x) \tag{4}
\end{equation*}
$$

so that the range of x need not go outside (0,1). From (1),

$$
\begin{align*}
& W(a, b, 0)=-W(a, b, 1)=a /(1-a) \\
& W\left(a, b, \frac{1}{2}\right)=0 \tag{5}
\end{align*}
$$

From the trigonometric identity

$$
\begin{equation*}
\cos \left(m \pi\left(\frac{1}{2} \pm t\right)\right)=\mp(-1)^{(m-1) / 2} \sin m \pi t, m \text { odd } \tag{6}
\end{equation*}
$$

we have

$$
\begin{equation*}
W\left(a, b, \frac{1}{2}+t\right)=-W\left(a, b, \frac{1}{2}-t\right) \tag{7}
\end{equation*}
$$

so that for complete tabulation of any $W(a, b, x)$ it suffices for x to range from 0 to $\frac{1}{2}$.

In connection with the choice of a and b, it is apparent that for a close to 1 , we can choose b as low as 3 , but the convergence of the series in (1) would be ton slow for practical calculation of $W(a, b, x)$ to high accuracy. Making a very small would give rapid convergence, but for accuracy fixed at a certain number of decimal places as a tends to get very small, say

$$
a=\epsilon, \quad b^{n}>N=\left\{1+\frac{3 \pi}{2}(1-\epsilon)\right\}^{n} / \epsilon^{n}
$$

becomes enormous and $W(\epsilon, b, x)$ becomes essentially the first term of (1), $\boldsymbol{\epsilon} \boldsymbol{c o s}$ ($b^{n} \pi x$), whose graph would appear like that of a very highly oscillatory function of small amplitude. As a compromise between these two extreme types, we took $a=\frac{1}{2}$ and $b=7$. The choice $a=\frac{1}{2}$ did not lead to too many terms of (1), 50 terms giving a truncating error $<\frac{1}{2} \cdot 10^{-15}$, and yet there were sufficient terms beyond the first few to give a graph that is characteristic of $W(a, b, x)$ rather than a predominantly sinusoidal type of curve. The $b=7$ barely satisfies (3), thus tending to minimize the oscillatory behavior of $W(a, b, x)$ and to facilitate graphing. We shall denote $W(a, b, x)$ which is tabulated here for $a=\frac{1}{2}$ and $b=7$ by $W(x)$.

This present table of $W(x), x=0(.001) 1$ to 12 D , was printed out and rounded from a preliminary calculation on the IBM 704 to several more places. Two separate and independent print-outs, supposedly identical, were proofread against each other, with just a single print-out error turning up. Naturally, no differencing check could be made upon the correctness of this table of $W(x)$, but every value underwent the following final functional check:

$$
\begin{equation*}
W(7 x)=2 W(x)-\cos (7 \pi x) \tag{8}
\end{equation*}
$$

which was performed by desk calculation upon $W(x)$ on one of the preliminary print-outs. The results showed $W(x)$ to be correct to around 14D. In employing (8), $W(7 x)$ was found in the table as $\pm W\left(x^{\prime}\right)$ for some suitable $x^{\prime}, 0 \leqq x^{\prime} \leqq \frac{1}{2}$, according to (4) and (7), and $\cos (7 \pi x)$, after reduction of $7 \pi x$ to the first quadrant, was

Fig. 1.-Illustration of a Weierstrass, Everywhere-Continuous Nowhere-Differentiable Function, $W(x)=\sum_{n=1}^{\infty} a^{n} \cos \left(b^{n} \pi x\right) a=\frac{1}{2} ; b=7 ; x=0(0.001) 0.500$
looked up in a well-known 15-place table at intervals of 0.01° [5]. The final 12 -decimal table was checked by reading it several times against one of the print-outs, and it is believed to be correct to well within a unit in the 12 th decimal.

The purpose of the accompanying figure, which is merely a broken line graph of the table of $W(x)$, is to furnish at a glance a view of the peculiar behavior of $W(x)$. Of course, the graphical picture would be more complete if the time and means were available for calculating $W(a, b, x)$ as a function of a also, and for a sequence of permissible odd integral values of b (according to (3)) to correspond to each a. Although no offhand justification could be found for drawing anything smoother than a broken line connecting these 500 points, one still finds its ripples of irregularity, superposed upon a broader pattern of smoothness, to be quite revealing as to the nature of $W(x)$ and how it might appear under repeated "magnification" (i.e., subtabulation).

To establish (8), replace x by $7 x$, in $W(x)=\sum_{n=1}^{\infty} \cos \left(7^{n} \pi x\right) / 2^{n}$, to get
$W(7 x)=2 \sum_{n=1}^{\infty} \cos \left(7^{n+1} \pi x\right) / 2^{n+1}=2 \sum_{n^{\prime}=2}^{\infty} \cos \left(7^{n^{\prime}} \pi x\right) / 2^{n^{\prime}}=2 W(x)-\cos (7 \pi x)$.
By repeated application of (8),
$W\left(7^{n} x\right)=2 W\left(7^{n-1} x\right)-\cos \left(7^{n} \pi x\right)=4 W\left(7^{n-2} x\right)-2 \cos \left(7^{n-1} \pi x\right)-\cos \left(7^{n} \pi x\right)$

$$
=8 W\left(7^{n-3} x\right)-4 \cos \left(7^{n-2} \pi x\right)-\cdots \quad \text { etc. until we reach }
$$

$$
\begin{equation*}
W\left(7^{n} x\right)=2^{n} W(x)-\sum_{r=0}^{n-1} 2^{r} \cos \left(7^{n-r} \pi x\right) \tag{9}
\end{equation*}
$$

From (9), for $x=1 / 7^{n}, W(1)=-1=2^{n} W\left(1 / 7^{n}\right)-\sum_{r=0}^{n-1} 2^{r} \cos \left(\pi / 7^{r}\right)$, from which

$$
\begin{equation*}
W\left(1 / 7^{n}\right)=-1 / 2^{n-1}+\sum_{r=1}^{n-1} \cos \left(\pi / 7^{r}\right) / 2^{n-r} \tag{10}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (10), we see at once that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{\sum_{r=1}^{n-1} 2^{r} \cos \left(\pi / 7^{r}\right)\right\} / 2^{n}=1 \tag{11}
\end{equation*}
$$

To test the value of standard numerical integration formulas upon $W(x)$, whose integral is given by

$$
\begin{equation*}
\int_{0}^{x} W(t) d t=\frac{1}{\pi} \sum_{n=1}^{\infty} \sin \left(7^{n} \pi x\right) / 14^{n} \tag{12}
\end{equation*}
$$

the values of $\int_{0}^{0.1} W(t) d t, \int_{0.1}^{0.2} W(t) d t, \cdots, \int_{0.4}^{0.5} W(t) d t$ were computed analytically from (12), and then were computed numerically by both trapezoidal and Simpson's rules at intervals of 0.001 , with the following results:

Interval	True Value	Trapezoidal Rule	Deviation	Simpson's Rule	Deviation
0 to 0.1	0.0189929	0.0189876	-0.0000053	0.019014	$+0.0000215$
0.1 to 0.2	-0.04145 65	-0.04143 80	+0.00001 85	-0.04145 43	+0.00000 22
0.2 to 0.3	0.0308462	0.0308443	-0.00000 19	0.0308514	+0.00000 52
0.3 to 0.4	0.0033770	0.0034254	+0.00004 84	0.0034027	+0.00002 57
0.4 to 0.5	-0.03298 02	-0.03300 67	-0.00002 65	-0.03288 27	+0.00009 75

The results show no recognizable advantage in Simpson's rule. In fact, the sum of the absolute values of the above deviations in the trapezoidal rule is around 10^{-4}, while the sum of the absolute values of the Simpson deviations is around $1 \frac{1}{2} \cdot 10^{-4}$. This may indicate that no higher-point formula will improve over the trapezoidal formula.

Lagrangian polynomial interpolation at intervals of 0.002 was tried for the 2through 7-point cases, for a mid-interval (i.e., already tabulated) value of $W(x)$ at two different places, $x=0.007$ and $x=0.037$, where the true value to 5 D is 0.60807 and 0.43362 respectively. At each place the error in almost all cases ranged from around 0.01 to 0.05 . More specifically, for $x=0.007$ the error fluctuated between 0.01 for every even-point interpolation and 0.014 to 0.049 for various odd-point interpolations, and for $x=0.037$ there were deviations of 0.032 and 0.055 for respeetive 2-point and 3-point interpolation and deviations ranging from 0.001 to 0.021 in the higher-point interpolation. On the basis of these two tests alone it would appear that one could not really count upon any systematic improvement beyond linear interpolation.

Finally, out of pure curiosity, 2- through 7-point Lagrangian differentiation, for the "first derivative," was tried out at the tabular interval of 0.001 , for $x=0.002$, and surprisingly enough, outside of the 2 -point answer of -74 and the 3 -point answer of -133 , the remaining four cases all came within 6 units of -150 .

From a casual look at the graph of $W(x)$, it is apparent that in place of the derivative there is a general directional trend from any point x_{0} if we do not go too far away from x_{0}, and we might seek a suitable quantitative estimate for an "average slope" between x_{0} and $x_{0}+. h$. (The discussion here is concerned with a suitable generalization of the left- or right-hand derivative, rather than the derivative.) One suggestion that would appear natural for $W(x, a, b)$, or any other continuous function, would be to investigate the possibilities of the average of the difference quotient $\left\{f(x)-f\left(x_{0}\right)\right\} /\left(x-x_{0}\right)$, which exists and is itself continuous for every x except x_{0} in the open interval $\left(x_{0}, x_{0}+h\right)$. This average difference quotient or $\mathscr{D}_{h} f\left(x_{0}\right)$ might have the following definition (assuming that it exists in the first place):

$$
\begin{equation*}
\mathscr{D}_{h} f\left(x_{0}\right)=\frac{1}{h} \int_{x_{0}}^{x_{0}+h}\left\{\left[f(x)-f\left(x_{0}\right)\right] /\left(x-x_{0}\right)\right\} d x \tag{13}
\end{equation*}
$$

That (13) may be a suitable generalization follows from the fact that when $f^{\prime}\left(x_{0}\right)$ exists, (13) exists, and

$$
\begin{equation*}
\lim _{h \rightarrow 0} \mathscr{D}_{h} f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \tag{14}
\end{equation*}
$$

This is seen at once from the replacement of $\left\{f(x)-f\left(x_{0}\right)\right\} /\left(x-x_{0}\right)$ by $f^{\prime}\left(x_{0}\right)+$ $\epsilon(x)$ in (13) and the continuity of $\epsilon(x)$ in the closed set $\left(x_{0}, x_{0}+h\right)$ which makes $\epsilon(x)$ integrable. Thus (13) exists and

$$
\left|\frac{1}{h} \int_{x_{0}}^{x_{0}+h} \epsilon(x) d x\right| \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

which implies (14).
It is not difficult to find examples of continuous functions $f(x)$ where $f^{\prime}\left(x_{0}\right)$ does not exist and (a) also $D_{h} f\left(x_{0}\right)$ does not exist, or (b) $D_{h} f\left(x_{0}\right)$ exists but $\lim _{h \rightarrow 0}$ $D_{h} f\left(x_{0}\right)$ does not exist. But we may also have (c) no $f^{\prime}\left(x_{0}\right)$, with both $D_{h} f\left(x_{0}\right)$ and $\lim _{h \rightarrow 0} \mathscr{D}_{h} f\left(x_{0}\right)$ existing. In other words the existence of $\lim _{h \rightarrow 0} \mathscr{D}_{h} f\left(x_{0}\right)$ still
does not imply the existence of $f^{\prime}\left(x_{0}\right)$. Such a counter-example,* which is due to the referee, is the following. Let $x_{0}=0$ and

$$
\begin{align*}
f(x) & =x \sin \frac{1}{x} \\
f(0) & =0 .
\end{align*}
$$

This continuous function has no derivative at $x=0$, but

$$
\lim _{h \rightarrow 0} \mathscr{D}_{h} f(0)=0
$$

First

$$
\mathscr{D}_{h}=\frac{1}{h} \int_{0}^{h} \sin \left(\frac{1}{x}\right) d x
$$

exists since the integrand is bounded and continuous except at one point. This suffices. To estimate D_{h} we let

$$
I_{n}=\int_{1 /(n+1) \pi}^{1 / n \pi} \sin \left(\frac{1}{x}\right) d x=\int_{n \pi}^{(n+1) \pi} \frac{1}{y^{2}} \sin y d y
$$

By the mean value theorem

$$
I_{n}=(-1)^{n} \cdot 2 / \theta_{n}^{2}
$$

where

$$
n \pi<\theta_{n}<(n+1) \pi
$$

Suppose that $h=1 /(n+a) \pi, 0 \leqq a<1$. Then

$$
\mathscr{D}_{h}=(n+a) \pi\left[\int_{(n+a) \pi}^{(n+1) \pi} y^{-2} \sin y d y+I_{n+1}+I_{n+2}+\cdots\right]
$$

and therefore $\left|\mathscr{D}_{h}\right|<(n+a) \pi\left|I_{n}\right|<2(n+a) \pi / n^{2} \pi^{2}$.
Therefore as $h \rightarrow 0, D_{h}$ also $\rightarrow 0$.
The authors wish to acknowledge the assistance of Mrs. Charlene M. Janos in checking the entire table of $W(x)$ by the functional check (8).

Convair-Astronautics
San Diego, California

1. A. N. Singh, The Theory and Construction of Non-Differentiable Functions, Lucknow University Studies, Faculty of Science, no. 1, 1935, reprinted in Squaring the Circle and Other Monographs, Chelsea Publishing Co., New York, 1953.
2. E. Goursat, A Course in Mathematical Analysis, Vol. 1, translated by E. R. Hedrick, Ginn \& Co., Boston, 1904, p. 423-425.
3. T. Bromwich, An Introduction to the Theory of Infinite Series, Macmillan \& Co., Ltd., London, 1908, p. 490-491. Note: The proof of the sufficiency of $a b>1+\frac{3 \pi}{2}(1-a)$ is not contained in the later 1926 edition.
4. G. H. Hardy, "Weierstrass's non-differentiable function," Trans. Amer. Math. Soc., v. 17, 1916, p. 301-325.
5. Nat. Bur. Standards Appl. Math.Ser. No. 5, Table of Sines and Cosines to Fifteen Decimal Places at Hundredths of a Degree, U. S. Government Printing Office, Washington 25, D. C., 1949.
[^1]Table of $W(x) \equiv \sum_{n=1}^{\infty} \cos \left(7^{n} \pi x\right) / 2^{n}$

x	$\mathrm{Tr}(x)$		x	$W(x)$	
. 000	1.000000000000	1.000	. 050	. 230889143353	. 950
. 001	.803915829849	. 999	. 051	. 206825262839	. 949
. 002	. 611886043858	. 998	. 052	. 271287157031	. 948
. 003	. 537776037527	. 997	. 053	. 161183494171	. 947
. 004	. 647474803938	. 996	. 054	.080695676970	. 946
. 005	. 871636985323	. 995	. 055	-. 020661299004	. 945
. 006	. 766877195775	. 994	. 056	-. 114505519373	. 944
. 007	. 608073455261	. 993	. 057	-. 022956525719	. 943
. 008	. 435029407578	. 992	. 058	-. 019517246455	. 942
. 009	. 405410649476	. 991	. 059	.011516881880	. 941
. 010	. 566413147293	. 990	. 060	-. 096981495280	. 940
. 011	. 542753672027	. 989	. 061	-. 271873547272	. 939
. 012	. 506949121598	. 988	. 062	-. 236530006345	. 938
. 013	. 348012524587	. 987	. 063	-. 169656324421	. 937
. 014	.22473 91530 39	. 986	. 064	.014984363487	. 936
. 015	. 271964502668	. 985	. 065	-. 002397088580	. 935
. 016	. 256658790418	. 984	. 066	-. 201819523674	. 934
. 017	. 345004843478	. 983	. 067	-. 258563139523	. 933
. 018	. 297440974020	. 982	. 068	-. 219325781704	. 932
. 019	. 198960284226	. 981	. 069	. 055503381580	. 931
. 020	. 162325475301	. 980	. 070	. 156909532647	. 930
. 021	. 077727533597	. 979	. 071	.014368399220	. 929
. 022	. $20584+479534$. 978	. 072	-. 098120330488	. 928
. 023	.28:363 5679636	. 977	. 073	-. 150745666850	. 927
. 024	. 317414736560	. 976	. 074	.092408849935	. 926
. 025	.287301603897	. 975	. 075	. 248905834007	. 925
. 026	. 110542934142	. 974	. 076	. 206325925700	. 924
. 027	. 172799430792	. 973	. 077	. 114623388235	. 923
. 028	.29881599873 .3	. 972	. 078	-. 023041891960	. 922
. 029	48372 8461058	. 971	. 079	.095578165349	. 921
. 030	. 544412194509	. 970	. 080	. 197940177319	. 920
. 031	. 323889912278	. 969	. 081	. 225319883420	. 919
. 032	. 269901328384	. 968	. 082	. 208765917694	. 918
. 033	. 332257446204	. 967	. 083	. 053975775743	. 917
. 034	. 583709258029	. 966	. 084	.048516604363	. 916
.0.35	. 749313015191	. 965	. 085	. 021281974278	. 915
. 036	. 566320961185	. 964	. 086	. 036845850718	. 914
. 037	. 433618648658	. 963	. 087	. 084333768249	. 913
. 038	. 364962638350	. 962	. 088	-. 012143373142	. 912
. 039	. 554359810640	. 961	. 089	-. 052152117101	. 911
. 040	. 755654226937	. 960	. 090	-. 195762284441	. 910
. 041	. 661416118270	. 959	. 091	-. 263387422681	. 909
. 042	. 542446760480	. 958	. 092	-. 218936017836	. 908
. 04.3	. 365535306506	. 957	. 093	-. 229315008958	. 907
. 044	. 411759059774	. 956	. 094	-. 192895454334	. 906
. 045	. 545024682996	. 955	. 095	-. 360489445976	. 905
. 046	. 521786010503	. 954	. 096	-. 516246830442	. 904
. 047	. 492488867602	. 953	. 097	-. 543500921487	. 903
. 048	. 300886443750	. 952	. 098	$-.503501035440$. 902
. 049	.227971991412	. 951	. 099	$-.338480678676$. 901
	$-W(x)$	x		$-W(x)$	x

Table of $W(x)$-Continued

x	$W^{W}(x)$		x	$W(x)$	
. 100	-. 425325404176	. 900	. 150	-. 609288741974	. 850
. 101	-. 601220772899	. 899	. 151	-. 480526549966	. 849
. 102	-. 714360466423	. 898	. 152	-. 497419707936	. 848
. 103	-. 690322659569	. 897	. 153	-. 494797514565	. 847
. 104	-. 437947306453	. 896	. 154	-.47354 2352265	. $8+6$
. 105	-. 402156353491	. 895	. 155	-. 492919696368	. 845
. 106	-. 506713093748	. 894	. 156	-. 369792885591	. 844
. 107	-. 652371746167	. 893	. 157	-. 306770974135	. 843
. 108	-. 687414647551	. 892	. 158	-. 219174990716	. $8+2$
. 109	-. 448151239309	. 891	. 159	$-.215316998341$. 841
. 110	-. 339489049228	. 890	. 160	-. 327748763911	. 840
. 111	-. 326968369691	. 889	. 161	-. 307517525062	. 8389
. 112	-. 425416276818	. 888	. 162	-. 270205665927	.838
. 113	-. 507012502615	. 887	. 163	-. 114947817484	. 837
. 114	-. 365270405346	. 886	. 164	-.05693 7644149	. 836
. 115	-. 287170298314	. 885	. 165	-. 195422966860	.835
. 116	-. 194358653972	. 884	. 166	-. 301528394441	. 8334
. 117	-. 203430154989	. 883	. 167	-. 383663917931	. 833
. 118	-. 276489528796	. 882	. 168	-. 229093944073	. 832
. 119	-. 240918706161	. 881	. 169	-. 095009141695	.8:31
. 120	-. 274278958066	. 880	. 170	-. 173038009899	. 830
. 121	-. 195945370568	. 879	. 171	-. 338066797386	. 829
. 122	-. 147456271919	. 878	. 172	-. 550640283216	. 828
. 123	-. 160779076002	. 877	. 173	-. 465847811099	. 827
. 124	-. 163131171657	. 876	. 174	-. 301298374107	. 826
. 125	-. 307959844170	. 875	. 175	-. 278036956560	. 825
. 126	-. 327790791831	. 874	. 176	-. 392806593650	. 824
. 127	-. 306421790698	. 873	. 177	-. 651827985226	. 823
. 128	-. 254575499271	. 872	. 178	-. 651823938820	. 822
. 129	-. 205212864540	. 871	. 179	-. 533510237189	. 821
. 130	-. 382265700618	. 870	. 180	-. 442684427472	. 820
. 131	-. 510086053512	. 869	. 181	-. 435780102183	. 819
. 132	-. 588978829307	. 868	. 182	-. 619858714015	. 818
. 133	-. 516050321822	. 867	. 183	-. 649222169263	. 817
. 134	-. 372280255549	. 866	. 184	-. 622778743301	. 816
. 135	-. 482224013576	. 865	. 185	-. 544416543173	. 815
. 136	-. 644769094244	. 864	. 186	-. 434165110185	. 814
. 137	-. 826566089190	. 863	. 187	-.47153 4372297	. 813
. 138	-. 789005024213	. 862	. 188	-. 441878591252	. 812
. 139	-. 584602058218	. 861	. 189	-. 483243465321	. 811
. 140	-. 580176101865	. 860	. 190	-. 481004554476	. 810
. 141	-. 673589329465	. 859	. 191	-. 362102463976	. 809
. 142	-. 883349774078	. 858	. 192	-. 283850725058	. 808
. 143	-. 901955447525	. 857	. 193	-. 139573437896	. 807
. 144	-. 717356798431	. 856	. 194	-. 171327351109	. 806
. 145	-. 635427188815	. 855	. 195	-. 243809120797	. 805
. 146	-. 601728492947	. 854	. 196	-. 218707253252	. 804
. 147	-. 739790581132	. 85.3	. 197	-. 138387132299	. 803
. 148	-. 779966135853	. 852	. 198	. 098018236071	. 802
. 149	-. 678212362364	. 851	. 199	. 146665232761	. 801
	$-W^{\prime}(x)$	x		$-W(x)$	x

Table of $W(x)$-Continued

x	W ${ }^{(x)}$		x	$W^{(x)}$	
. 200	. 0633661001875	. 800	. 250	. 707106781187	750
. 201	-. 041752236404	. 799	. 251	. 599861638391	749
. 202	$-.07+763075018$. 798	. 252	. 429991952571	. 78
. 203	164015022004	797	.25:3	. 366609323594	. $7+7$
. 204	$\underline{99971 ~ 358815 ~} 61$. 796	254	. 327956254406	746
.205	2823368437500	795	. 255	. $452181113+91$	745
. 206	$100351267+93$. 794	256	. 430007860724	744
. 207	-. $11800636500+29$.793	257	. 38270 70934 21	. 743
. 208	066602 5:3 2800	.792	.258	. 3243123879108	742
. 209	221948890979	. 791	. 259	. 180403450772	. 711
. 210	$29866693766{ }^{4} 3$. 790	. 260	. 200821749015	740
. 211	.14:347 00102 07	. 789	.261	. 19.5029228286	739
. 212	-. 111562760397	. 788	. 262	. 282771153362	7:38
.213	-.08927 61047 33	.787	26:3	. 331249414310	737
.214	-. 005034368393	. 786	. 264	. $195358370+39$	736
. 215	12:393 181964	.785	265	. 131300193473	735
. 216	072370252068	. 784	. 266	. 059239700164	734
. 217	-. 128706688182	. 78.3	267	. 203208184197	733
. 218	- 171906311985	. 782	268	.38097 30175 89	732
. 219	-. $205039+622+39$. 781	269	. 36488 72:388 22	731
. 220	-. 10396 935\% 29	. 780	. 270	. 300695859863	730
. 221	- . 0565708490053	. 779	. 271	. 128889622058	729
.292	-. 110580497998	. 778	. 272	. 219838857152	728
. 223	- 110503 +7920 41	. 777	. 273	. 454506652344	. 727
. 224	- $22.2639855+24$. 776	274	. 587883702728	726
. 225	- $20+332052+80$. 775	. 275	. 610633787202	725
. 226	- 13899 1473 88	. 774	. 276	. 378971170932	724
.297	- 105338 -5227430	. 773	. 277	. 354910090637	723
. 228	.17179 91975 $4 t$. 772	. 278	. 53331701360 09	722
. 299	-. 1189668899875	. 771	279	.7't080 38401 87	. 721
.230	- 117132971174	. 770	. 280	. $87: 3884+6+126$	720
. 231	- $1183.51+906+96$. 769	. 281	. $66.344+129097$	719
.232	10:367 $20+18 \quad 75$. 768	282	.55:360 +4:310 88	. 718
.23:3	$28+702: 3+4.534$. 767	. 283	.59858 96747 52	. 717
.234	30):73 06642148	. 766	. 284	.75311 92971 19	. 716
.23.5	$\underline{3.5331} 56984685$. 765	. 285	.93575 6808902	. 715
.236	1×2470787784	. 764	. 286	. 80593 3152:3 57	. 714
.237	160914617836	. 763	. 287	.70250 5478563	713
.238	+3+16:316:98 35	. 62	. 288	. 627697873512	. 712
. 239	-7-2. 4003.5722	.761	. 289	. 640513152434	711
.240	4if020 70.578	. 760	. 290	.76998 7079556	.710
. 241	:39393:37880 48	759	. 291	. 713433253880	. 709
. 242	290912109120	7.58	. 292	. 701110242736	. 708
. 243	47-23 86:339 28	. 7.77	. 293	. 297008638417	707
. 244	.1.5452 0270215	. 756	. 294	. 4819639979270	706
. 245	78049 9732 619	. 755	. 295	. 488412861021	. 70.5
. 246	. 587611394618	. 754	. 296	. 438203271149	. 704
. 247	.34392 0842196	.75:3	. 297	. $5: 32468913876$	703
. 248	435:34 578892 80	. 752	. 298	. $30028+764504$. 702
. 249	53704 7031188	. 751	. 299	. 364153318500	. 701
	$\cdots{ }^{-W}(x)$	x		$-{ }^{W}(x)$	x

Table of $W(x)$-Continued

x	$W(x)$		x	$W^{\prime}(x)$	
. 300	. 2628655556060	. 700	. 350	. 007787786967	. 650
. 301	. 145829858987	. 699	. 351	-. 172042208650	. 649
. 302	.28563 97407 01	. 698	. 352	-. 230292124186	. 648
. 303	. 366335015787	. 697	. 353	-. 236473086444	. 647
. 304	. 332828174047	. 696	. 354	-. 017622527442	. 646
. 305	. 2145896315 30	. 695	. 355	. 066692219513	. 645
. 306	.009392092645	. 694	. 356	. 000756269021	. 644
. 307	. 107108007880	. 693	. 357	-.02063 75236 12	. 64.3
. 308	. 256249170422	. 692	. 358	-. 088801343464	. 642
. 309	. 378389794527	. 691	. 359	. 039807768840	. 641
. 310	. 343852008552	. 690	. 360	. $10006608+169$. 640
. 311	. 098756207519	. 689	. 361	. 122198955334	. 639
. 312	. 107374648370	. 688	. 362	. 187375555888	. 638
. 313	. 231604097359	. 687	. 363	. 109542131700	. 637
. 314	. 455356200252	. 686	. 364	. 128198733070	. 636
. 315	. 541026547993	. 685	. 365	.076103882989	. 63.5
. 316	. 337362835770	. 684	. 366	. 097415611137	. 634
. 317	. 283558670620	. 683	. 367	. 228356637641	. 633
. 318	. 309685218951	. 682	. 368	. 197963587829	. 632
. 319	. 514273737170	. 681	. 369	. 169375551830	. 631
. 320	. 664588016607	. 680	. 370	-. 005623321753	. 630
. 321	. 553830222236	. 679	. 371	-. 071895736001	. 629
. 322	. 513060836700	. 678	. 372	. 046040839666	. 628
. 323	. 438641418698	. 677	. 373	. 079045840870	. 627
. 324	. 523492442512	. 676	. 374	. 097088476428	. 626
. 325	. $6300+2962766$. 675	. 375	$-.127561144122$. 625
. 326	. 593087296501	. 674	. 376	-. 300435011772	. 624
. 327	. 627949761307	. 673	. 377	-. 272566776210	. 623
. 328	. 518054127103	. 672	. 378	-. 212567851798	. 622
. 329	. 473234735089	. 671	. 379	-. 094269445639	. 621
. 330	. 452967693202	. 670	. 380	-.266:32 6380178	. 620
. 331	. 413659576699	. 669	. 381	-. 480451908693	. 619
. 332	. 5243335336236	. 668	. 382	-.55645 2319561	. 618
. 333	. 459997192026	. 667	. 38.3	-.52637 5208999	. 617
. 334	. 370141234331	. 666	. 384	-. 332125132429	. 616
. 335	. 225520223519	. 665	. 385	-. 394797441787	. 615
. 336	. 109045545952	. 664	. 386	-. 546570792333	. 614
. 337	. 234213776308	. 663	. 387	-. 661928470916	. 613
. 338	. 253032342937	. 662	. 388	-. 690405329205	. 612
. 339	.233763293751	. 661	. 389	-. 499783789632	. 611
. 340	. 050899086254	. 660	. 390	-. 481003862593	. 610
. 341	-. 157169066972	. 659	. 391	-. $50+447925890$. 609
. 342	-. 090447294999	. 658	. 392	-. 561830583268	. 608
. 343	-. 017529421589	. 657	. 393	-. 623185880380	. 607
. 344	. 096997517951	. 656	. 394	-. 507782619653	. 606
. 345	-. 016889367223	. 655	. 395	-. 496473394832	. 605
. 346	-. 256540916879	. 654	. 396	-. 413025289140	. 604
. 347	-. 273828859764	. 65.3	. 397	-. 355899213583	. 603
. 348	-. 214638285053	. 652	. 398	-. 388678221092	. 602
. 349	. 001842583582	. 651	. 399	-. 357916348126	. 601
	$-H^{\prime}(x)$	x		$-W^{\prime}(x)$	x

Table of $W(x)$-Concluded

x	${ }^{-1}(x)$		x	$\mathrm{W}^{(x)}$	
. 400	-. 436338998125	. 600	. 450	-. 140858891107	. 550
. 401	-. 341086485367	. 599	. 451	-. 287018570394	. 549
. 402	-. 199956661714	. 598	. 452	-. 406623055260	. 548
. 403	-. 156248434239	. 597	. 453	-. 260535891944	. 547
. 404	-. 153443186489	. 596	. 454	-. 097926998633	. 546
. 405	-. 336604273789	. 595	. 455	-. 145695409097	. 545
. 406	-. 330070659737	. 594	. 456	-. 269840936285	. 544
. 407	-. 204524663206	. 593	. 457	-. 478762406797	. 543
. 408	-. 091024226568	. 592	. 458	-. 449072853516	. 542
. 409	-. 041116796583	. 591	. 459	-. 347533693600	. 541
. 410	-. 267744462533	. 590	. 460	-.33327 1943823	. 540
. 411	-. 382743337509	. 589	. 461	-. 351462576411	. 539
. 412	-. 369985144242	. 588	. 462	-. 522736207443	. 538
. 413	-. 246894530700	. 587	. 463	-. 559874126767	537
. 414	-. 117367839284	. 586	. 464	-. 573440633245	. 536
. 415	-. $29765178+411$. 585	. 465	-. 574046955042	. 535
. 416	-. 474942149222	584	. 466	-. 481362266042	. 534
. +17	-. 596558491874	. 583	. 467	-. 514276190127	. 533
. 418	-. 532753680459	. 582	. 468	-. 513013566251	. 532
. 419	-. 359683100154	. 581	. 469	-. 614361772969	. 531
. 420	-. 442652877724	. 580	. 470	-. 691447066605	. 530
. 421	-. 573676815200	. 579	. 471	-. 563926376792	. 529
. 422	-. 755581064553	. 578	. 472	-. 455200438735	. 528
. 423	-. 773431680693	. 577	. 473	-. 329119232810	. 527
. 424	-. 632426172682	. 576	. 474	-. 425403235539	. 526
. 425	-. 642109468815	. 575	. 475	-. 576270763741	. 525
. 426	-. 647921262064	. 574	. 476	-. 513978368936	. 524
. 427	-. 771078310191	. 573	. 477	-. 359133792298	. 523
. 428	-. 823697924071	. 572	. 478	-. 104305080599	. 522
. 429	-. 768865812318	. 571	. 479	-. 10454 9917966	. 221
. 430	-. 782959853829	. 570	. 480	-. 262922687867	. 520
. 431	-. 671789512299	. 569	. 481	-. 317068197654	. 519
. 432	-. 657286818410	. 568	. 482	-. 241336234353	. 518
. 433	-. 659575657242	. 567	. 483	. 057625073401	. 517
. 434	-. 678922621460	. 566	. 484	. 172881203015	. 516
. 435	-. 767524170356	. 565	. 485	. 086277988317	. 515
. 436	-. 628986550620	. 564	. 486	-. 051539303959	. 514
. 437	-. 497193980006	. 563	. 487	-. 120444889659	513
. 438	-. 388380690326	. 562	. 488	. 107050321466	. 512
. 439	-. 411535915314	. 561	. 489	. 266940692326	. 511
. 440	-. 583261669224	. 560	. 490	. 282408306216	. 510
. 441	-. 523607097404	. 559	. 491	. 150281642695	. 509
. 442	-. 381908298612	. 558	. 492	-. 023617557402	. 508
. 443	-. 174430123101	. 557	. 493	. 066843893329	. 507
. $44 \pm$	-. 127787944171	. 556	. 494	. 158754247212	506
. 445	-. 324136866258	. 555	. 495	. 232156321975	. 505
. 446	-. 389994440708	. 554	. 496	. 183674621092	. 504
. 447	-. 356892453527	. 553	. 497	.019312160007	. 50.3
. 448	-. 132668438220	. 552	. 498	. 003785592821	. 502
. 449	. 000590698460	. 551	. 499	-. 044416634711	. 501
			. 500	. 000000000000	. 500
	$-W(x)$			$-W^{\prime}(x)$	x

[^0]: Received February 23, 1960; revised July 28, 1960.

[^1]: * Another counter-example found after that of the referee is the following: $f(x)=$ $x \phi(x), x \neq 0, f(0)=0$, where $\phi(x)=1$ except in the intervals $\left[\left(1 / n-1 / n^{3}\right), 1 / n\right]$, within which $\phi(x)=0$. Now $f(x)$ is continuous at $x=0$ and has no derivative there. But $1 / h \int_{0}^{h} \phi(x) d x \rightarrow 1$ as $h \rightarrow 0$, because the "dipped-out" area becomes an infinitesimal fraction of the whole (also infinitesimal) area between 0 and h, since as $h \sim 1 / n$, we remove $\sum_{m=n}^{\infty} 1 / m^{3} \sim 1 / 2 n^{2} \sim 0(h)$.

